Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Polymorphic form IV of olanzapine

Ranjit Thakuria and Ashwini Nangia*

School of Chemistry, University of Hyderabad, Professor C. R. Rao Road, Gachibowli, Central University PO, Hyderabad 500 046, India
Correspondence e-mail: ashwini.nangia@gmail.com

Received 4 October 2011
Accepted 23 October 2011
Online 31 October 2011
2-Methyl-4-(4-methylpiperazin-1-yl)-10 H -thieno[2,3-b][1,5]benzodiazepine, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}$, commonly known as olanzapine, is a psychotropic agent that belongs to the thienobenzodiazepine class of drugs. A new polymorph form IV was obtained upon attempted cocrystallization with nicotinamide in a 1:1 ratio from an ethyl acetate solution. Two butterfly-like molecules form centrosymmetric dimers stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the 4-methylpiperazin-1-yl fragment and the benzene/thiophene aromatic system. Form IV consists of a herringbone arrangement of dimers, whereas the previously reported form II has parallel dimers. Both crystal structures are sustained by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond.

Comment

Olanzapine [systematic name: 2-methyl-4-(4-methylpiperazin1 -yl)-10H-thieno[2,3-b][1,5]benzodiazepine], (I), is a frontline psychotropic drug marketed by Eli Lilly under the brand name Zyprexa. It is one of the top 20 prescription drugs based on a recent survey (Craig \& Stitzel, 1997; Lindsley, 2010), and is a yellow crystalline solid that is practically insoluble in water ($43 \mathrm{mg} \mathrm{l}^{-1}$), sparingly soluble in acetonitrile and ethyl acetate, and freely soluble in chloroform. According to the Biopharmaceutics Classification System (BCS), olanzapine belongs to the Class II category, namely a drug with low solubility and high permeability. Six solid-state forms of olanzapine have been characterized (Bunnell et al., 1996, 1998; Hamied et al., 2002; Sundaram et al., 2006; Reguri \& Chakka, 2005; Wawrzycka-Gorczyca et al., 2004), together with a few solvates and hydrates (Reutzel-Edens et al., 2003; Almarsson et al., 2007; Hickey \& Remenar, 2006; Wawrzycka-Gorczyca et al., 2004, 2007; Capuano et al., 2003; Larsen, 1997; Bunnell et al., 1997; Kotar-Zordan et al., 2005; Dalmases Barjoan et al., 2006, 2007) and salts with carboxylic acids (Keltjens, 2005; Simonic et al., 2006; Kozluk, 2007; Bush, 2008; Mesar et al., 2008; Ravikumar et al., 2005; Sridhar \& Ravikumar, 2007; Thakuria \& Nangia, 2011). Only one X-ray crystal structure of olanzapine has been reported to date (Reutzel-Edens et al., 2003; Wawrzycka-Gorczyca et al., 2004), the powder X-ray
diffraction pattern (PXRD) of which matched that of a polymorph designated form II in US patents (Bunnell et al., 1996, 1998). We now report the X-ray crystal structure of a polymorph of olanzapine, designated form IV (Hamied et al., 2002) by PXRD overlay.

(I)

The molecule of (I) has a central seven-membered diazepine ring which is fused with a benzene and a thiophene ring, and substituted with a 4 -methylpiperazin-1-yl ring (Fig. 1). The boat conformation of the central 1,5-diazepine ring defines the overall butterfly shape of the molecule, but the 4-methyl-piperazin-1-yl ring can have conformational variation (Reutzel-Edens et al., 2003).

Cocrystallization of olanzapine with nicotinamide in a 1:1 ratio from ethyl acetate afforded block-shaped pale-yellow crystals of olanzapine form IV in the space group $P 2_{1} / c$. The expected cocrystal with nicotinamide was not obtained. Such observations are not unusual (Day et al., 2006; Li et al., 2011; Sanphui et al., 2011; Vishweshwar et al., 2005). The asymmetric unit of olanzapine form IV contains one molecule of olanzapine, having a single hydrogen-bond donor, $\mathrm{N} 2-\mathrm{H} 2$, and two exposed acceptors, imine atom N 1 and piperazine atom N 4 , which are hydrogen bonded in the crystal structure.

Figure 1
The molecular structure of olanzapine form IV, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
(a) The parallel stacking of olanzapine dimers in olanzapine form II. (b) The herringbone arrangement of dimers in form IV.

Two butterfly-like molecules form centrosymmetric dimers (Reutzel-Edens et al., 2003; Wawrzycka-Gorczyca et al., 2004) in the crystal structures of both forms IV and II, which are stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between the 4-methylpiperazin-1-yl fragment ($\mathrm{C} 14-\mathrm{H} 14 A$ in form IV) and the benzene/thiophene aromatic system. Theoretical calculations estimated that this $\mathrm{C}-\mathrm{H} \cdots \pi$ binding energy is about $8 \mathrm{kcal} \mathrm{mol}^{-1}\left(1 \mathrm{kcal} \mathrm{mol}^{-1}=4.184 \mathrm{~kJ} \mathrm{~mol}^{-1}\right.$) (WawrzyckaGorczyca et al., 2007). The packing of such dimer motifs in the two structures is completely different: form IV consists of a herringbone arrangement of dimers, whereas the dimers are parallel in form II (Fig. 2).

The intermolecular interaction $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$ [symmetry code: (i) $\left.x,-y+\frac{1}{2}, z+\frac{1}{2}\right]$ (Table 1) links the molecules in form IV into extended chains which can be described by the graphset notation $C(5)$ (Bernstein et al., 1995), and thereby connects the inversion-related dimers to form columns along the c axis. A similar, slightly shorter, interaction $[\mathrm{H} \cdots \mathrm{N}=2.27$ (2) \AA A $]$
leading to similar chains occurs in the form II structure. The chains in form IV are further enhanced by a very weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction between piperazine atom N 4 and a methyl H atom, $\mathrm{H} 8 B$, on the thiophene ring of the molecule two links further on in the chain. This $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction can be described with a graph-set notation of $C(10)$.

Experimental

A solution of olanzapine ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$) and nicotinamide (24 mg , 0.2 mmol) in a $1: 1$ ratio in ethyl acetate (approximately 10 ml) was allowed to evaporate slowly at room temperature for 5-10 d. Complete evaporation of the solvent resulted in a mixture of crytalline nicotinamide and olanzapine. Colourless transparent crystals of nicotinamide were manually separated. Olanzapine form IV, as yellow block-shaped crystals, was selected for X-ray diffraction. Because the polymorph was obtained from a cocrystallization experiment, the phase purity of the bulk sample could not be confirmed by powder diffraction.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{~S}$
$M_{r}=312.44$
Monoclinic, $P 2_{1} / c$
$a=9.9130$ (8) \AA
$b=16.5329$ (13) A
$c=9.9992$ (8) A
$\beta=98.023(1)^{\circ}$

$$
\begin{aligned}
& V=1622.7(2) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.20 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& 0.30 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.942, T_{\text {max }}=0.961$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.119$
$S=1.12$
3202 reflections
205 parameters
16674 measured reflections 3202 independent reflections 2963 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.29$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.23$ e $^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.86(2)$	$2.39(2)$	$3.224(2)$	$165(2)$
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{~N} 4^{\mathrm{ii}}$	0.96	$2.69(1)$	$3.466(2)$	138

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x, y, z+1$.

The N -bonded atom H2 was located from a difference-electron density map, and its positional and isotropic displacement parameters were refined freely. H atoms attached to C atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl, $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methylene, and $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve
structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank the DST for research funding (grant No. SR/S1/OC-67/2006). RT thanks the UGC for a fellowship. The Bruker SMART APEX CCD X-ray diffractometer was funded by the DST (IRPHA) and UGC is thanked for the UPE programme.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3078). Services for accessing these data are described at the back of the journal.

References

Almarsson, Ö., Hickey, M. B., Peterson, M., Zaworotko, M. J., Moulton, B. \& Rodríguez-Hornedo, N. (2007). US Patent No. 2007/0059356A1.
Bernstein, J., Davis, R. E., Shimon, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bunnell, C. A., Hendriksen, B. A. \& Larsen, S. D. (1996). EP Patent No. 733635.

Bunnell, C. A., Hendriksen, B. A. \& Larsen, S. D. (1998). US Patent No. 5736541.

Bunnell, C. A., Hotten, T. M., Larsen, S. D. \& Tupper, D. E. (1997). US Patent No. 5703232.
Bush, J. K. (2008). US Patent No. 2008/0096871A1.
Capuano, B., Crosby, I. T., Fallon, G. D., Lloyd, E. J., Yuriev, E. \& Egan, S. J. (2003). Acta Cryst. E59, o1367-o1369.

Craig, C. R. \& Stitzel, R. E. (1997). Modern Pharmacology with Clinical Applications, 5th ed., pp. 385-405. Boston, Massachusetts: Little, Brown \& Company.

Dalmases Barjoan, P. \& Bessa Bellmunt, J. (2006). WO Patent No. 2006/ 013435A1.
Dalmases Barjoan, P. \& Herbera Espinal, R. (2007). WO Patent No. 2007/ 077134A1.
Day, G. M., Trask, A. V., Motherwell, W. D. S. \& Jones, W. (2006). Chem. Comтии. pp. 54-56.
Hamied, Y. K., Kankan, R. N. \& Rao, D. R. (2002). US Patent No. 6348458B1.
Hickey, M. B. \& Remenar, J. (2006). US Patent No. 2006/0223794A1.
Keltjens, R. (2005). US Patent No. 2005/0272721A1.
Kotar-Zordan, B., Lenarsic, R., Grcman, M., Smrkolj, M., Meden, A., Simonic, I., Zupet, R., Gnidovec, J. \& Benkic, P. (2005). WO Patent No. 2005/ 085256A1.
Kozluk, T. (2007). WO Patent No. 2007/032695A1.
Larsen, S. D. (1997). US Patent No. 5637584.
Li, J., Bourne, S. A. \& Caira, M. R. (2011). Chem. Commun. 47, 1530-1532.
Lindsley, C. W. (2010). Am. Chem. Soc. Chem. Neurosci. 1, 407-408.
Mesar, T., Copar, A., Sturm, H. \& Ludescher, J. (2008). US Patent No. 2008/ 0161557A1.
Ravikumar, K., Swamy, G. Y. S. K., Sridhar, B. \& Roopa, S. (2005). Acta Cryst. E61, o2720-o2723.
Reguri, B. R. \& Chakka, R. (2005). US Patent No. 2005/0153954A1.
Reutzel-Edens, S. M., Bush, J. K., Magee, P. A., Stephenson, G. A. \& Byrn, S. R. (2003). Cryst. Growth Des. 3, 897-907.

Sanphui, P., Goud, N. R., Khandavilli, U. B. R., Bhanoth, S. \& Nangia, A. (2011). Chem. Commun. 47, 5013-5015.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Simonic, I., Lenarsic, R., Kotar-Jordan, B., Zupet, R. \& Gnidovec, J. (2006). WO Patent No. 2006/010620A2.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Sridhar, B. \& Ravikumar, K. (2007). J. Struct. Chem. 48, 198-202.
Sundaram, V., Pandurang, S., Dayaram, V. \& Bommareddy, S. K. R. (2006). WO Patent No. 2006/102176A2.
Thakuria, R. \& Nangia, A. (2011). CrystEngComm, 13, 1759-1764.
Vishweshwar, P., McMahon, J. A., Oliveira, M., Peterson, M. L. \& Zaworotko, M. J. (2005). J. Am. Chem. Soc. 127, 16802-16803.

Wawrzycka-Gorczyca, I., Borowski, P., Osypiuk-Tomasik, J., Mazur, L. \& Koziol, A. E. (2007). J. Mol. Struct. 830, 188-197.
Wawrzycka-Gorczyca, I., Koziol, A. E., Glice, M. \& Cybulski, J. (2004). Acta Cryst. E60, o66-o68.

